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Abstract
The spreading of a circular liquid drop on a solid substrate can be described in terms of the time
evolution of its base radius R(t). In complete wetting, the quasistationary regime (far away
from initial and final transients) typically obeys the so-called Tanner law, with R ∼ tαT ,
αT = 1/10. Late-time spreading may differ significantly from the Tanner law: in some cases the
drop does not thin down to a molecular film and instead reaches an equilibrium pancake-like
shape; in other situations, as revealed by recent experiments with spontaneously spreading
nematic crystals, the growth of the base radius accelerates after the Tanner stage. Here we
demonstrate that these two seemingly conflicting trends can be reconciled within a suitably
revisited energy balance approach, by taking into account the line tension contribution to the
driving force of spreading: a positive line tension is responsible for the formation of
pancake-like structures, whereas a negative line tension tends to lengthen the contact line and
induces an accelerated spreading (a transition to a faster power law for R(t) than in the Tanner
stage).

1. Introduction

The spreading of a liquid on a solid surface is a complicated
process where many factors come into play, not necessarily
known and not always controllable: the kinetic behavior may
be strongly influenced or even dominated by the volatility and
viscosity of the liquid (or by other rheological parameters if
the liquid is non-Newtonian), by the presence of impurities
in the bulk phases (chemical contaminants, surfactants,
polymers, etc), by the roughness or texture of the surface,
or by its crystalline structure and chemical composition. In
consequence, the spreading of thin films is generally dependent
upon the details of the structures and interactions in the
coexisting phases. In contrast, for thicker films and drops one
expects a less specific behavior, described by universal laws.
However, although the prominent features of the spreading
of macroscopic drops are relatively well understood [1–3],
a comprehensive theoretical framework in which all of the
experimentally observed phenomena harmoniously find their
place is still lacking at present.

Here we are concerned with a standard textbook
problem—the spontaneous spreading of a non-volatile drop on
an ideal, flat, clean, horizontal, homogeneous solid surface (see
figure 1). The drop has a macroscopic size but is sufficiently
small that we can completely discard the effects of gravity. The
spreading parameter S = σSG − σSL − σ is positive, so the
drop tends to cover as much of the solid surface as possible to
shield it against the gas phase; σSG, σSL and σ are the interfacial
tensions of the solid/gas, solid/liquid and liquid/gas interfaces,
respectively.

We focus on the following three known features of
spontaneous spreading:

• The base radius R(t) of a circular drop grows during
spreading and, at intermediate times t (far from initial and
final transients), typically obeys a power law R(t) ∼ tαT

with αT = 1/10 [4, 5], known as the Tanner law.

• The final stage of spreading of non-volatile droplets
is not always a molecular film. Sometimes a flat,
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Figure 1. (a) A sketch of a macroscopic liquid droplet spreading on a solid substrate. R(t) and θ(t) denote the base radius and the contact
angle of the macroscopic part of the droplet, respectively, as inferred from the inflection point at the apparent contact line. (b) A sketch of a
liquid droplet at a late spreading time, in the situation where the final stage of spreading is a mesoscopic pancake. An inflexion point may still
exist, but the relevant R(t) now corresponds to the limit between the microscopic and mesoscopic regions; the corresponding θ(t) is
undefined.

(This figure is in colour only in the electronic version)

bounded structure is reached instead—a so-called pancake
(see [1, 6–8]).

• An acceleration of the spreading process (an apparent
transition from Tanner’s power law to a faster one) has
been observed for spontaneously spreading nematic liquid
crystals [9, 10]. Experiments revealed an algebraic growth
R(t) ∼ tα with α nearly twice as large as the exponent
αT characterizing the Tanner law: α = 0.2 [9] and α =
0.19 [10].

At the present time, it is well understood why the radius R(t)
of a spontaneously spreading circular drop grows in proportion
to t1/10. This law has been derived analytically [4, 5, 11]
and confirmed experimentally on many accounts [5, 12–14].
The fundamental argument is that the hydrodynamics in the
bulk of a drop are driven by capillary forces alone, which
directly yields R ∼ t1/10 for a self-similar bulk, in the
lubrication approximation [4, 5]. Alternatively, the trend
can be regarded as a competition between the hydrodynamic
dissipation (primarily in the contact line region of the drop) and
an unbalanced capillary force [1–3, 11]. Note that the law is
rather universal—in the sense that the observed exponent 1/10
is most often independent of the precise nature of the spreading
liquid—and has been observed not only for simple liquids,
but also for oils, polymeric liquids, liquid metals and nematic
liquid crystals. For non-Newtonian liquids some deviations

from the Tanner law can be observed, attributable to their
specific rheological properties and, hence, specific features of
the hydrodynamic dissipation in the bulk.

The reason why in some cases a spontaneously spreading
droplet attains an equilibrium pancake-like form is also clear.
Such flat pancake-like structures are sometimes more favorable
energetically than molecular films: this occurs when short-
range interactions promote dewetting, even though the overall
situation is that of complete wetting. Theoretically, such
structures have been predicted and analyzed in [1, 6, 7].
They were also observed experimentally (see, e.g., [15]). A
key feature of the spreading process as it reaches a pancake
shape—as a transient following the Tanner stage—is that
the base radius of the drop tends to a stationary value (see
figure 1(b)). It must be noted, though, that the shape of such
a drop differs considerably from that of a capillary cap; the
geometrical meaning of R(t) is also quite different.

As opposed to the Tanner law and the emergence of
mesoscopic pancakes, the physical origin of the accelerated
spreading observed in [9, 10] has yet to be clarified. Also,
the latter trend is apparently in conflict with the notion that
a Tanner stage must be terminated by the onset of either a
molecular film or a mesoscopic pancake.

Our motivation in this paper is to identify the essential
factors of the spreading kinetics that might have been
disregarded so far, and thus to achieve a more complete
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qualitative understanding of the standard textbook problem.
We focus more specifically on the spreading dynamics that
may develop after the Tanner stage and try to account for
the two apparently conflicting trends, possibly by introducing
new notions or mechanisms. As a first step in this direction,
we perform an analysis within the classical framework of an
energy balance approach [1]. This approach is known to
provide a qualitative derivation of the Tanner law, capturing
only a few essential features of the phenomenon, in a
physically transparent fashion. As noted in [16], the energy-
based equations are functionally equivalent to the standard
hydrodynamic approaches used in the literature but are lighter
in terms of analytical calculations and assumptions involved
(as compared to, e.g., phenomenological boundary conditions,
should the thickness profile be described by a differential
equation).

Within this approach, the Tanner law is obtained by
balancing the rate of energy dissipation in the spreading
macroscopic droplet and the driving force of spreading, which
is taken equal to the unbalanced Young force. We point
out that the analysis of de Gennes [1] disregards the line
tension contribution to the driving force of spreading [17, 18].
Typically, the line tension τ is very small—only 10−10–
10−11 N (see, e.g., [19–21])—and it is legitimate to neglect
it when dealing with large, essentially capillary droplets.
Nonetheless we show that, when such a contribution is taken
into account, a consistent, non-conflicting picture emerges,
with the following trends for a drop (supposedly well
approximated by a spherical cap):

• At sufficiently early spreading times the effect of τ is
negligible and the Tanner stage holds.

• At long times and for negative values of τ , the spreading
process crosses over to a significantly faster power law
than Tanner’s R ∼ t1/10 (as observed for the nematic
droplets [9, 10]).

• At long times and for positive values of τ , the growth
of R(t) slows down and terminates at a finite value
R(∞). This latter trend is indicative of the emergence of
pancakes.

Therefore, the approach presented in this paper resolves
a seemingly controversial behavior of spreading processes,
provided that a properly defined line tension τ is taken into
account. We note, however, that this approach is justified only
in the case of macroscopic drops for which both the surface
tension and the line tension are valid notions.

The paper is outlined as follows. In section 2 we first
present the derivation of the Tanner law in terms of the energy
balance approach. Then, in section 3, we revisit the standard
picture by analyzing different factors which may influence
the spreading kinetics, especially the notion of line tension.
Finally, in section 4 we discuss possible limitations of our
approach.

2. The energy balance approach

To lay the basis of our analysis, we start with the derivation
of the Tanner law within the framework of the energy balance

approach, presented originally by de Gennes in his 1985 review
paper [1]. Additional details, discussions and applications of
this approach can be found in [14, 16]. Further on, in section 3,
we will discuss a couple of additional factors which are missing
from the seminal approach, but may account for the abnormal
spreading behavior observed after the Tanner stage.

In figure 1(a) we sketched a typical configuration for a
macroscopic liquid droplet spreading spontaneously on a solid
substrate. The drop can be ‘divided’ into the following three
regions: a ‘macroscopic’ bulk, a ‘mesoscopic’ film (a region
that is within the range of surface forces), and a ‘microscopic’
precursor, the thickness of which amounts to several molecular
diameters. Note that figure 1 is schematic and the relative sizes
of these three regions are not to scale. For brevity, we will
henceforth not use the adjectives ‘macroscopic’, ‘mesoscopic’
and ‘microscopic’; we will instead refer to the three regions as
the bulk droplet, the film and the precursor.

We note first that the edge of the precursor spreads well
ahead of the film and the bulk droplet: the radius of the
precursor grows as

√
t [22–28] and the film plays the role of

a reservoir feeding the precursor; this picture is valid as long
as the said reservoir is far from being exhausted. Thus the
precursor is decoupled from the rest of the drop and its only
role in the process can be seen as lubricating the substrate for
spreading of the film and the bulk drop.

A fundamental assumption of this approach is that the
length scales of the bulk and the film are well separated, i.e.,
that the bulk of the drop is much wider and taller than the film.
Thus the bulk can be adequately approximated by a spherical
cap with the base radius R(t), contact angle θ(t), and nearly
constant volume V (V = π

4 R3θ for sufficiently small θ ),
i.e., the bulk is in equilibrium at constant volume V and an
instantaneous base radius R(t).

Then, we can define an instantaneous free energy
2π R(t)F(t) along with an instantaneous rate of energy
dissipation 2π R(t)W (t), and propose that the evolution of
these two quantities obeys the standard relationship of the
mechanics of dissipative systems:

(Wmacro + Wmeso + Wmicro)R = −U
d(RF)

dR
, (1)

where U = dR/dt is the instantaneous velocity of the apparent
contact line. The right-hand side (rhs) of (1) is the rate of
change of the free energy of the system. It is equivalent to
the power of the driving force dF/dR applied to the moving
contact line, and is balanced by the total dissipation that occurs
in the system, i.e., the left-hand side (lhs) of (1). The terms
Wmacro, Wmeso and Wmicro are the dissipation rates in the bulk,
film and precursor, respectively, divided by the length 2π R of
the apparent contact line. Keep in mind that F(t), W (t) and
the driving force dF/dR are also, by definition, reduced by the
length 2π R(t).

Next we specify the rhs of (1) [1]:

− 1

R

d(RF)

dR
� S + σ(1 − cos θ). (2)

Equation (2) takes into account the surface energies of the
three interfaces meeting at the macroscopic contact line and
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determines their variation with respect to R(t) at constant
spherical cap volume. Note that the result is equivalent to a
straightforward application of the Young law; in fact, the rhs
of (2) is typically referred to as an ‘unbalanced Young force’.

As for the lhs of (2), we can formally decompose the
dissipation according to the regions outlined in figure 1(a), as
follows: Wmacro corresponds to hydrodynamic dissipation in
the bulk drop, where viscous flows are driven by the capillary
pressure; Wmeso corresponds to hydrodynamic dissipation in
the film, where viscous flows are driven by the disjoining
pressure; Wmicro corresponds to friction at the microscopic
scale, both at the edge of the film and in the molecular
precursor.

The dissipation in the bulk drop is well approximated by
that in a wedge, and is of the form

Wmacro � 3ηU 2g(θ) ln

∣
∣
∣
∣

xmax

xmin

∣
∣
∣
∣
, (3)

where η is the viscosity, xmax and xmin are effective cutoff
lengths for the integration over the droplet height and g(θ) is
a known function of the instantaneous contact angle. A salient
feature is that the leading asymptotic behavior of g(θ) when
θ → 0 is g(θ) � 1/θ , which means that Wmacro exhibits
an unbounded growth as θ → 0. In the following we shall
use the notation κ = 3 ln | xmax

xmin
|: this is a slowly varying,

empirical quantity, which varies only slightly as the droplet
spreads and introduces minor, logarithmic corrections to the
power laws; experimental data suggest that a good choice is a
nearly constant κ ≈ 120 [13].

We now come to the dissipation in the film. A striking
result of Hervet and de Gennes [11] is that the complete wetting
regime is characterized by

Wmeso � SU, (4)

which means that the dissipation within the film compensates
exactly the first term on the rhs of (2), rendering the rate of
spreading independent of S. This result was obtained for non-
retarded van der Waals substrate forces, but can be generalized.

Finally, the form of the dissipation term Wmicro was
discussed by Blake and Haynes [29, 30]: it was found that
Wmicro ∼ ζU 2 at leading order in U , where ζ is a constant
friction coefficient. Note that in the case of complete wetting,
ζ is dependent on the thickness of the precursor.

Thus, provided that S is consumed entirely in the film,
the dynamical behavior results from a competition between
the two remaining dissipation channels, Wmacro and Wmicro.
As θ → 0, Wmicro is independent of θ , whereas Wmacro ∼
1/θ and thus clearly dominates at long spreading times.
Dissipation at the microscopic contact line may dominate
(e.g., for low viscosity fluids) at intermediate times, but
ultimately hydrodynamic dissipation in the core drop will take
over [1, 14].

Consequently, neglecting Wmicro as compared to Wmacro,
one finds in the limit of small θ that (1) adopts the following
form:

θ3 ≈ 2κCa, (5)

which is a fundamental relation between the velocity of the
moving contact line and the instantaneous value of the contact
angle (Ca = ηU/σ is known as the capillary number). It was
derived analytically by Voinov [4] and by Tanner [5] using a
different approach (within the lubrication approximation).

Now taking into account that the volume V ≈ π
4 R3θ of

the bulk drop remains nearly constant during spreading, we
obtain

Ṙ = 64

π3
V 3

(κη

2σ

)−1
R−9, (6)

from which the Tanner laws R ∼ t1/10 and θ ∼ t−3/10 ensue
trivially. The behavior described by (5) and (6) has been
observed experimentally in [5, 12, 13].

3. The energy balance approach revisited

Equations (2), (5) and (6), under the assumption of well
separated length scales of the bulk and film, predict an
unbounded growth of R. This is an ideal spreading behavior,
through which the droplet virtually thins down to a molecular
film. As we have already remarked, this is not always the
case, as the spreading may terminate with the appearance of
equilibrium pancake-like structures [1, 6, 7]. In the latter
situation, the Tanner law clearly describes an intermediate
stage, and the transition to a pancake must be described by
some kind of crossover in terms of R(t): our intuition is that R
will tend to a finite value, although it is not clear whether the
definition of R will remain consistent with figure 1(a).

An opposite trend was revealed by recent experimental
studies focusing on the spontaneous spreading of nematic
liquid crystals (cyanobiphenyl 5CB) on hydrophilic [9] or
hydrophobic [10] substrates: after a transient Tanner stage,
an ‘acceleration’ of the spreading process has been observed.
The data suggest that the base radius R, as inferred from the
inflection point of the thickness profile, grows algebraically but
with an exponent which is substantially larger than αT = 0.1.
In [9] it was shown that the Tanner law crosses over to R ∼ tα

with α ≈ 0.2. Later it was realized (see figure 6 in [10])
that the Tanner relation in (5) does not hold for late stages of
spreading: for small θ and Ca the best fit to the experimental
data follows θ ∼ Ca0.7 rather than the form predicted by (5).
The latter relation, together with the volume conservation
condition R3θ ∼ V yields R ∼ tα with α ≈ 0.19. A
more thorough analysis of the behavior depicted in figure 5
in [10] suggests that actually the reported law R ∼ t1/5 is
only a part of a crossover from the Tanner stage to an even
faster growth law. Experimental data in [10] span timescales
ranging from a second to two hours, and at the end of the
experiment the trend is clearly rather R ∼ t1/3 than t1/5, and
possibly still accelerating. Consequently, although there is
no conclusive evidence on the precise value of the exponent
α characterizing the accelerated spreading regime, it is clear
that α is significantly larger than the Tanner exponent and thus
the physical mechanism responsible for the late, post-Tanner
stages of spreading might be different from the one described
in section 2.
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3.1. First guess: shear thinning

We notice first that the accelerated spreading was observed for
nematic liquid crystals. Nematic crystals are known to have a
non-Newtonian, shear-thinning rheology (see, e.g., [31, 32]).
Shear thinning affects the flow pattern, which necessarily
modifies the spreading dynamics. Thus our first idea is to
revisit the lhs of (1) and, more specifically, the term Wmacro

in (3). The expression (4) for Wmeso is also queried in the case
of shear thinning.

A detailed analysis of the contact line dynamics within the
framework of the thin film model shows that the characteristic
shear rates in the capillary wedge and in the film decrease
as the contact line velocity decreases [33]. In consequence,
for a spontaneously spreading droplet of a non-Newtonian,
shear-thinning fluid the effective viscosity will increase with
time, resulting in a spreading law of the form R ∼ tα with
α < 1/10. Numerical simulations carried out in [34] confirm
that α < 1/10 for shear-thinning fluids and that α > 1/10 for
shear-thickening fluids. Hence the dominant effect from shear
thinning is that the spontaneous spreading of a non-Newtonian
fluid is generally slower than predicted by the Tanner law and
cannot explain the experimentally observed acceleration of the
spreading process.

3.2. Second guess: line tension

We now turn our attention to the rhs of (1) and notice that
the unbalanced Young force—which is also the rhs of (2)—
is, in fact, a mere approximation of the actual driving force of
spreading. In general, the total free energy of the liquid/solid
system can be decomposed into bulk, surface, line, and point
contributions (see, e.g., [17, 18]). Thus, the driving force (2),
as a derivative of the total free energy, should also contain all
these contributions. This picture, of course, is meaningful only
in the case of macroscopic drops, for which both the surface
tension and the line tension are well defined.

As a matter of fact, the spherical cap adequately describes
the profile of the bulk drop, but the profile of the mesoscopic
film deviates from it, such that the quasistationary free energy
2π RF must include a correction term, which is accumulated in
the vicinity of the apparent contact line and can be seen as a line
energy τ multiplied by the apparent perimeter 2π R [35]. The
expression (2) takes into account the surface energies of the
three macroscopic interfaces meeting at the apparent contact
line, but does not include the line tension contribution.

The idea that the line tension may have an appreciable
impact on the global behavior is not new. As an excess
quantity, τ can be positive or negative, as noticed already
by Gibbs [36]. Negative line tension, for example, can
significantly reduce the work required to create a nucleus
(100 Å in diameter) of a new phase on solid or liquid
substrates [37]. Conversely, positive line tension can explain
the stability of Newtonian black films towards rupture [38].
For liquid droplets of nanometer size, negative (resp.
positive) line tension can promote spreading (resp. dewetting)
even if the macroscopic spreading parameter S is negative
(resp. positive) [35]. A review of different phenomena caused

by line tension effects and some conceptual aspects of line
tension can be found in [17, 18].

Evaluation of the contribution due to the line tension τ

involves many delicate issues (e.g., a proper definition of the
effective interface potential used in the model, or a proper
convention when choosing the Gibbs dividing interface) and,
in general, is a more complex problem than the calculation of
the surface tension—essentially because more phases meet at
the contact line than at an interface (see, e.g., [17, 18] for a
more thorough discussion). The problem is already difficult
in equilibrium situations (e.g., partial wetting, with S < 0),
and clearly becomes even more complex when one considers
spontaneous spreading, since here one has to account for the
temporal evolution of the droplet thickness profiles.

The consideration of these subtle points is beyond
the scope of the present approach. For our purposes
it will be sufficient to resort to a recently proposed
phenomenological generalization of (2) in terms of non-
equilibrium thermodynamics: as shown in [39], the force
applied to the apparent contact line of a droplet can be written
down as

fτ = S + σ(1 − cos θ) − τ

R
, (7)

which differs from the expression in (2) by an additional term
accounting for the contribution of the contact line tension τ

to the driving force of spreading. The definition of fτ as a
generalized Young force is valid both in complete and partial
wetting, and is consistent with the so-called modified Young
equation fτ = 0, obtained at equilibrium by an appropriate
generalization of Gibbs classical theory of capillarity [35, 40].

At this point we must stress that the expression (7) for fτ is
formally valid only if τ is constant. If we assume a power-law
behavior for τ ∼ Rβ , then the modified Young force becomes
S + σ(1 − cos θ) − τ

R (1 + β). Here we argue that it is not
likely for τ to vanish at long t and large R, and thus β � 0.
Thereby (7) essentially holds for τ ∼ Rβ , up to a numerical
factor (1 + β) > 0 applied to the line tension term, i.e., the
last term on the rhs of (7). This consideration has little impact
on the following qualitative argument, but will be relevant to
quantitative implications.

3.3. Line tension effects on spreading

Suppose now that (1) holds; that the dissipation Wmeso in the
film obeys (4); that the dissipation Wmacro is given by (3); but
that the driving force of spreading is now determined by (7),
i.e., that the line tension contribution is taken into account.
Then (5) is replaced with the following:

κ
η

θ
Ṙ = 1

2
σθ2 − τ

R
. (8)

Since τ is typically very small, one naturally finds that
the surface tension contribution will dominate at small and
intermediate times, again giving rise to the Tanner law R ∼
t1/10. On the other hand, as R grows to sufficiently high values,
the line tension contribution will inevitably take over and
become a dominant driving force, provided that τ/R decays
more slowly than the capillary term σθ2.

In the latter regime, the behavior is crucially dependent on
the sign of τ :

5
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• If τ is positive and tends to a constant value, which is
physically plausible, then (8) predicts that spreading will
terminate at a finite value of R, for which the first and the
second terms on the rhs of (7) become equal to each other.
One may interpret this as an indication of the formation
of a pancake. However, during the actual transition to a
pancake, a drop would not retain the shape of a capillary
cap (see figure 1(b)), which somewhat challenges this
prediction.

• If τ is negative and the second term in (8) dominates, we
find the following post-Tanner behavior:

R ∼
(

−
∫ t

τ dt

)1/5

. (9)

This spreading law is qualitatively different from R ∼
t1/10. In the framework outlined in section 2, the driving
force of spreading is associated with the surface tension.
By contrast, during the late stages of spreading, the
droplet becomes flatter and can be viewed as ‘quasi-
two-dimensional’. It is then not surprising that the line
tension τ should govern the spreading process, provided
that |τ | � σ Rθ2.

It is tempting to obtain coarse quantitative results from (9) and
from the condition |τ | � σ Rθ2. In particular, if we assume
that τ is a negative constant, then (9) predicts R ∼ t1/5, which
agrees with previously reported experimental results [9, 10].
Looking at figure 5 in [10] we can estimate the value of τ from
the characteristic base radius at the apparent crossover between
the Tanner stage and the accelerated spreading regime: this
yields τ ≈ −10−9 N. This value is an order of magnitude
higher than previously reported values of the line tension in
the partial wetting situations, but it must be noted that many
experimental measurements of τ have been performed for
simple liquids; in the case of nematic liquid crystals an elastic
contribution to the effective interface potential (a consequence
of the anchoring properties) may yield substantially higher
values of τ .

However, upon a closer examination of the case of
negative τ , there is no good reason to expect that τ should
approach a constant value. One rather expects the film region to
become progressively more pronounced and the drop profile to
significantly deviate from a spherical cap-like shape; hence τ ,
a functional of local droplet thickness, will grow as a function
of time (in terms of its absolute value). Consequently, at late
spreading stages, one may expect a growth of R(t) that is faster
than R ∼ t1/5.

4. Conclusions

We have presented in this paper both the classical energy
balance approach—as developed by de Gennes—and a revised
version of it, which incorporates a line tension contribution to
the driving force of spreading. The revisited framework was
motivated by apparently contradictory trends at long spreading
times for macroscopic droplets in complete wetting. By taking
line tension into account, we have complemented the classical
framework with the following twofold interpretation:

• A positive line tension—essentially a ‘collar’ around a
spreading droplet—stops spreading and is responsible for
the formation of mesoscopic pancakes.

• A negative line tension—which tends to lengthen
the apparent contact line—governs the late stages of
spreading, resulting in the acceleration of this process.

We must now voice a few words of caution concerning
our approach, which seems intuitive but may have several
shortcomings due to its simplicity.

First we admit that the formal definition of line tension
τ in partial wetting—a functional of an equilibrium profile,
and an integral of the effective interface potential—cannot
be easily generalized to complete wetting and thus remained
undetermined within our analysis. The case of constant,
positive τ is plausible, but negative τ is more likely to grow as a
function of time and base radius, a growth which we are unable
to specify. We merely expect that, as in the partial wetting case,
τ is a certain functional of the mesoscopic thickness profile,
rather than an independent, arbitrary quantity (see, e.g., [41]).

We have already stated that in the case of positive τ our
prediction of the emergence of pancakes is indicative at best:
indeed, in the process of reaching the stationary shape of a
pancake, a droplet gradually deviates from the spherical cap
shape assumed by sections 2 and 3; this deviation entails
corrections that our approach does not account for. A similar
word of caution exists for negative τ and arises from a thorough
comparison with experiment. Indeed, a remarkable feature of
nematic 5CB droplets observed in [9, 10] is that the reported
accelerating phase is accompanied by the development of a
large ‘foot’ (essentially the drop adopts a bell shape similar to
figure 1(a), without exaggeration). This large foot is a warning
against the applicability of energy balance as developed in
sections 2 and 3: the key assumption of a spherical cap of
constant volume Vcap = π

4 R3θ is increasingly less valid as the
mesoscopic film drains liquid from the macroscopic droplet.
In other words, the separation of macroscopic and mesoscopic
length scales (both vertical and lateral), in the experimental
layout that we are trying to describe, may be more precarious
than what was assumed in our analytical framework.

In the light of these shortcomings, our agenda is to
develop a more robust approach describing late stages of
droplet spreading, based on the seminal approach by Tanner
describing the time evolution of the thickness profile of whole
droplets within the thin film approximation [4, 5]. In the
latter framework, scale separation is not an issue, and the
fundamental result is that droplets gradually turn into diffusive
films in the sense of Derjaguin [42]. Results have already been
obtained for the specific case of nematic droplets, and we shall
present them in a companion paper [43].

We are also looking forward to developing the notion of a
dynamic line tension in spreading processes, through a detailed
study of the hydrodynamic wedge [1, 44, 45]. It is important to
note that nematic 5CB droplets exhibit both of the non-trivial
types of post-Tanner behavior detailed in this paper: R(t)
crosses over from R ∼ t0.1 to faster power laws (at this point
the drop looks like figure 1(a)), but eventually the spreading
terminates with a mesoscopic pancake (figure 1(b)). In terms
of τ , this means that the physically relevant line tension
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is negative during the accelerating phase, but later becomes
positive. As figure 1 suggests, the geometrical properties of
the droplet are quite different in the two regimes, and it is not
clear whether a consistent definition of τ can be established for
such liquids as nematic liquid crystals.
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